Computing 3D Periodic Triangulations
نویسندگان
چکیده
This work is motivated by the need for software computing 3D periodic triangulations in numerous domains including astronomy, material engineering, biomedical computing, fluid dynamics etc. We design an algorithmic test to check whether a partition of the 3D flat torus actually forms a triangulation (which subsumes that it is a simplicial complex). We propose an incremental algorithm that computes the Delaunay triangulation of a set of points in the 3D flat torus without duplicating any point, whenever possible. As far as we know, this is the first algorithm of this kind whose output is provably correct. Proved algorithms found in the literature are in fact always computing with 27 copies of the input points, while our algorithmic test detects when such a duplication can be avoided, which is usually possible in practical situations. The algorithm was implemented and is going to be submitted to the Cgal Editorial Board†. A video of this work was presented at SoCG’08‡. Key-words: triangulation, periodic, flat torus, Delaunay This work was partially supported by the ANR (Agence Nationale de la Recherche) under the “Triangles” project of the Programme blanc (No BLAN07-2 194137) http://www-sop.inria.fr/geometrica/collaborations/triangles/. ∗ INRIA Sophia Antipolis – Méditerranée [Email: {Manuel.Caroli,Monique.Teillaud}@sophia.inria.fr] † www.cgal.org ‡ http://www.computational-geometry.org/SoCG-videos/socg08video in ria -0 03 56 87 1, v er si on 3 2 Fe b 20 09 Calculer des triangulations périodiques en 3D Résumé : Ce travail est motivé par le besoin d’un logiciel pour calculer des triangulations périodiques 3D dans de nombreux domaines dont l’astronomie, l’ingénierie des matériaux, l’informatique bio-médicale, la dynamique des fluides, etc. Nous concevons un test algorithmique pour vérifier qu’une partition du tore plat 3D forme une triangulation (ce qui comprend la propriété d’être un complexe simplicial). Nous proposons un algorithme incrémental qui calcule la triangulation de Delaunay d’un ensemble de points dans le tore plat 3D, sans duplication de points si possible. C’est à notre connaissance le premier algorithme de ce genre pour lequel la correction du résultat soit prouvée. Les algorithmes prouvés que l’on trouve dans la littérature calculent avec 27 copies des points, alors que notre test détecte les cas où cette duplication peut être évitée, ce qui est en général possible dans les situations pratiques. L’algorithme a été programmé et sera soumis au comité éditorial de la bibliothèque Cgal§. Une video de ce travail a été présentée à SoCG’08¶. Mots-clés : triangulation, périodique, tore plat, Delaunay § www.cgal.org ¶ www.computational-geometry.org/SoCG-videos/socg08video in ria -0 03 56 87 1, v er si on 3 2 Fe b 20 09 3D Periodic Triangulations 3
منابع مشابه
Decoupling the CGAL 3D Triangulations from the Underlying Space
The Computational Geometry Algorithms Library Cgal currently provides packages to compute triangulations in R and R. In this paper we describe a new design for the 3D triangulation package that permits to easily add functionality to compute triangulations in other spaces. These design changes have been implemented, and validated on the case of the periodic space T. We give a detailed descriptio...
متن کاملFlattening 3D Triangulations for Quality Surface Mesh Generation
A method of flattening 3D triangulations for use in surface meshing is presented. The flattening method supports multiple boundary loops and directly produces planar locations for the vertices of the triangulation. The general nonlinear least-square fit condition for the triangle vertices includes conformal (angle preserving) and authalic (area preserving) conditions as special cases. The metho...
متن کاملA Hexagon Model for 3D Lorentzian Quantum Cosmology
We formulate a dynamically triangulated model of three-dimensional Lorentzian quantum gravity whose spatial sections are flat two-tori. It is shown that the combinatorics involved in evaluating the one-step propagator (the transfer matrix) is that of a set of vicious walkers on a two-dimensional lattice with periodic boundary conditions and that the entropy of the model scales exponentially wit...
متن کاملThree-Dimensional Constrained Delaunay Triangulation: a Minimalist Approach
In this paper we summarize our experiences with 3D constrained Delaunay triangulation algorithms for industrial applications. In addition, we report a robust implementation process for constructing 3D constrained triangulations from initial unconstrained triangulations, based on a minimalist approach, in which we minimize the use of geometrical operations such as intersections. This is achieved...
متن کاملComputing geodesic paths on triangulated manifolds
Solving the Eikonal equation on a surface allows establishment of a curvilinear coordinate system which facilitates many types of physics-based simulations and measurements. Existing methods that solve the Eikonal equation on surface triangulations suffer from significant limitations prohibiting their use in many applications. First, the surface may not have any holes. Second, every obtuse tria...
متن کامل